切割线定理推导 (图文)
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切割线定理证明:
设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB,连接AT, BT
∵∠PTB=∠PAT(弦切角定理)
切割线定理的证明
∠APT=∠TPA(公共角)
∴△PBT∽△PTA(两角对应相等,两三角形相似)
则PB:PT=PT:AP
即:PT²=PB·PA(即切割线定理)。
如何切割线定理证明??用初中知识!
顶点在圆上,一边和圆相交,另 图示
一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)
如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,则有∠PCA=∠PBC(∠PCA为弦切角)。