割线定理与切割线定理区别
区别:
割线定理 是圆外一点引圆的双割线 每条割线与圆有两个交点 共四个交点
而切割线定理 是圆外一点引圆的一条切线和一条割线 共三个交点
联系:
实际上切割线定理就是割线定理中一条割线向圆外滑动至与圆相切。
这一点我们从他们得出的结论上可以看得出来,割线定理中:PAxPB=PCxPD
在切割线定理中,由于PC与圆相切 所以:PAxPB=PCxPC=PC²
希望你能学好这两个知识。加油!
什么是切割线定理的推论?
圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有 PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
进一步升华(推论):
过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)
若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|
故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。(这就是“圆幂”的由来)