什么是切割线定理和相交弦定理?
切割线定理
如图
,
ABT是⊙O的一条割线,TC是⊙O的一条切线,切点为C,则TC2=TA·TB
证明:连接AC、BC
∵弦切角∠TCB对弧BC,圆周角∠A对弧BC
∴由弦切角定理,得 ∠TCB=∠A
又∠ATC=∠BTC
∴△ACT∽△CBT
∴AT:CT=CT:BT, 也就是CT2=AT·BT
割线定理
如图
,
直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD
证明:连接AD、BC
∵∠A和∠C都对弧BD
∴由圆周角定理,得 ∠A=∠C
又∵∠APD=∠CPB
∴△ADP∽△CBP
∴AP:CP=DP:BP, 也就是AP·BP=CP·DP
什么是“相交弦定理”?
圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)
具体如下:
若弦AB、CD交于点P
则PA·PB=PC·PD